發布時間:2023-10-07 15:57:03
序言:寫作是分享個人見解和探索未知領域的橋梁,我們為您精選了8篇的人工智能素養教育樣本,期待這些樣本能夠為您提供豐富的參考和啟發,請盡情閱讀。
自1956年人工智能概念在達特茅斯會議提出以來, 人工智能的發展超出了人們的想象:1997年, IBM超級電腦深藍擊敗國際象棋世界冠軍卡斯帕羅夫;2016年, 由Google旗下的深度學習公司Deep Mind開發的人工智能圍棋程序Alpha Go戰勝了世界圍棋冠軍李世石, 這件事轟動了全世界[1]。隨后有關人工智能的熱點應用不斷推出, 比如無人駕駛、智能醫生、語音與人臉識別等, 讓我們認識到人工智能的應用已與生活息息相關。在教育領域, 人工智能應用也取得了重大突破, 比如2017年高考期間, 機器人艾達挑戰高考數學, 10分鐘就答完, 獲得134分, 激發了教育領域對人工智能的巨大熱情, 同時也引發了人們對教育的憂慮與反思[2]。2017年7月國務院印發了《新一代人工智能發展規劃》, 提出人工智能產業競爭力在2030年要達到國際領先水平。目前世界主要發達國家先后從國家層面人工智能政策規劃, 將人工智能作為國家經濟發展、社會變革和國際競爭的新動力[1]。
1 人工智能定義和發展階段
人工智能的英文是Artificial Intelligence, 簡稱AI, 人工智能的內容不斷豐富和發展, 至今還沒有統一的定義。比較權威的說法認為[3]:人工智能是關于人造物的智能行為, 主要包括知覺、推理、學習、交流和在復雜環境中的行為。人工智能的長期目標是發明出可以像人類一樣或能更好地完成以上行為的機器, 短期目標是理解這種智能行為是否存在于機器、人類或其他動物中, 所以它包含了科學和工程雙重目標。根據其功能強弱, 人工智能分為三類, 即弱人工智能、強人工智能還有超級人工智能。人工智能的發展大體上經歷了三個階段, 第一階段是20世紀50~60年代, 提出人工智能的概念。主要以命題邏輯、謂詞邏輯等知識表達和啟發式搜索算法為代表;第二階段是20世紀70~80年代, 提出了專家系統, 同時基于人工神經網絡的算法研究發展迅猛, 伴隨著半導體技術計算硬件能力的逐步提高, 人工智能逐漸開始突破;第三階段是自20世紀末以來, 尤其是2006年開始進入了大數據和自主學習的認知智能時代。隨著移動互聯網的快速發展, 人工智能的應用場景也開始增多, 特別是深度學習算法在語音和視覺識別上實現了巨大的突破[4,5]。人工智能的技術體系主要分為四個方面, 即機器學習、自然語言處理、圖像識別以及人機交互等。當今擊敗世界圍棋冠軍李世石的Alpha GO主要應用了機器學習中的深度學習算法。
2 人工智能應用狀況與反思
2017年, 阿里的無人超市落地杭州, 進店、挑選商品、付款支付一氣呵成, 消費者幾乎在完全自主的狀態下完成購物。與此類似, 昆山富士康公司裁員6萬名工人, 全用機器人代替。京東、淘寶引入的智能機器人替代了原來的倉庫管理、人工客服等崗位。因此有學者悲觀地斷言:在人工智能時代, 因為很多職業崗位或技能將被智能機器人所代替, 職業院校畢業生很有可能面臨畢業就失業的窘境。筆者認為, 我們不應該重蹈歷史上英國制定的限制汽車推廣使用的《紅旗法案》的悲劇。正是這個在今天看來毫無道理的, 但卻持續了三十年的法案讓德國和美國的汽車工業完全趕上來, 最終遠超英國。人工智能應用必將淘汰或替代很多現有就業崗位, 但同時又會創造新的就業崗位, 這是一個伴隨著產業智能升級的、長期的艱難過程, 對于職業教育來說, 這既是一個嚴峻的挑戰, 也是一個難得的機遇。
3 人工智能時代職業教育的發展策略
為了更積極地適應人工智能時代, 除了國家層面的統籌規劃、科學指導和政策、經費支持之外, 建議還要做好以下幾個方面的發展規劃。
3.1 解放思想, 更新理念與制度
中國工程院院士潘云鶴提出, 人工智能走向2.0階段的真正原因是世界正從原來由人類社會與物理空間構成的二元空間, 向著由物理空間、人類社會與信息空間構成的新三元空間演變[6]。因此, 職業教育在教學和管理過程中應該加入人工智能等相關理念和技術, 同時其辦學定位、人才培養方案、專業建設、課程內容、考核評價標準等方面都需要做出相應的改進。比如當前大多數職業院校非計算機類專業的課程安排中, 信息技術類課程課時偏少, 數據處理、編程類或人工智能課程幾乎沒有, 這樣的安排不利于提升學生的信息素養, 必須做出相應的調整, 同時適當減少將來可被人工智能應用替代的技能課程的課時, 比如電算會計、環境監測等。
3.2 善用人工智能, 提升教學與管理
在人工智能背景下, 教師們現有的重復性工作和大量數據積淀的教學任務, 比如批改作業或閱卷或課堂考勤都可能被人工智能取代, 因此, 教師能騰出更多的時間, 更充分地關注學生的個性差異, 從而為學習者提供更精確的個性化學習服務, 教師也能夠及時調整教學方法和手段, 優化教學評價方式, 補充教學資源, 減少備課重復性工作, 提升教學效率, 真正地做得因材施教, 同時學生們的學習方法和方式將不同程度地得到重構, 基于大數據的智能在線學習平臺大量出現, 不同的學校、學科及專業課程不再封閉, 學習時時處處都可以進行, 碎片化與個性化學習將日益普遍。教師能完整地跟蹤學生的整個學習過程, 比如學生上課是否睡覺、是否玩手機、是否在教室里與其他同學合作學習等, 都能夠根據監測數據進行智能解析, 有利于更有效、更全面地對學生進行過程性評價。大部分課程考試將全部自動化, 考生資格審查利用人臉識別、監考與閱卷都由智能機器來完成。上述人工智能給教學帶來的這些變化既需要網絡硬件設施和相關軟件系統來支撐, 更需要職業教育的教師們繼續提升信息技能、深化和加強信息素養。
3.3 深化產教融合、優化實訓筑牢就業
在人工智能時代, 職業院校應與相關行業統籌發展, 深化產教融合, 拓寬企業參與的途徑, 深化引企入教改革, 支持引導企業深度參與職業院校的教育教學改革, 多種方式參與學校專業規劃、教材開發、教學設計、課程設置、實習實訓, 促進企業需求融入人才培養環節;鼓勵以引企駐校、引校進企、校企一體等方式吸引優勢企業與學校共建共享生產性實訓基地;全面推行現代學徒制和企業新型學徒制, 推動學校就業與企業招工無縫銜接。比如職業教育將出現新師徒制, 行業領域的行家里手將通過互聯網以VR或者AR技術言傳身教的方式, 帶領規模龐大的徒弟用碎片時間進行學習與實踐。
3.4 完善終身學習的職業教育體系
隨著人工智能應用的深入推廣, 職業院校培養的技能型人才所掌握的技能如果不及時進行充電升級, 中低端的重復性強的工作將面臨被智能機器人不同程度進行替代的危險。所以對于不少技能崗位, 守著一門技術吃一輩子老本的時代將一去不復返。因此, 職業教育要繼續完善終身教育體系, 為職業教育學生的充電升級鋪就一條縱深的通道。
3.5 人文教育為道, 智能教育為用
在人工智能的幫助下, 簡單重復性的工作將被機器替代, 人們將從重復繁瑣的事務中解脫出來, 轉去從事更具有創造性、創新性或者更具有情感類的工作, 這些工作需要人與人之間的合作與溝通, 因此, 職業教育更需要注重學生思想道德水平、人文綜合素質的培養, 這是做人之道, 在此基礎之上激發學生們的學習主動性和創造力, 促進跨界思維的形成, 更好地掌握人工智能時代的相關職業崗位知識和相應的智能技能。著名理論物理學家霍金曾說:完全人工智能的研發可能意味著人類的末日。Tesla汽車和Space X公司創始人馬斯克說:我們必須非常小心人工智能。如果必須預測我們面臨的最大現實威脅, 恐怕就是人工智能了[7]。一群沒有良好道德水平的, 但掌握了智能技術或設備的人們是危險的, 所以職業教育應該從學生入學起就開始, 不斷提升學生的思想道德水平, 熱愛社會、熱愛生活、樂于助人、與人為善。只有這樣, 人工智能應用才能更好地服務人們、造福社會。
4 結論
人工智能正在快速又深刻地改變我們的教學、生活和工作方式, 也對職業教育提出了嚴峻的挑戰, 同時也是一個巨大的機遇。職業教育在面對人工智能時代的變革時, 須要從國家政策、理念與制度、教學管理、產教融合、終身學習等方面做好應對, 切實地把握人文教育之道對智能教育之用的統領原則, 培養能很好地掌控人工智能技術和應用的人才。
參考文獻
[1]謝青松.人工智能時代職業教育的轉型和發展[J].教育與職業, 2018 (8) :50-56.
[2]蘇令.人工智能來了, 教育當未雨綢繆[EB/OL].[2018-05-15].
[3]Nils J.Nilsson.人工智能[M].鄭扣根, 莊越挺, 譯.北京:機械工業出版社, 2000.
[4]王璐菲.美國制定人工智能研發戰略規劃[J].防務視點, 2017 (3) :59-61.
[5]賀倩.人工智能技術在移動互聯網發展中的應用[J].電信網技術, 2017 (2) :1-4.
關鍵詞:訊飛超腦計劃;人工智能;未來生活
中圖分類號:TP18 文獻標識碼:A 文章編號:1671-2064(2017)01-00218-01
人工智能包含三個層次:計算智能、感知智能和認知智能,訊飛超腦計劃是包含模擬人腦的知識表示與推理、類人學習機制與新知識的獲取、機器加載專業知識成為專門的教育領域。訊飛超腦計劃是基于全球關于人工神經網絡的深度學習研究,簡單來說就是希望未來訊飛超腦計劃能夠將人工智能從只是簡單地能聽會說到能夠深度思考相關問題的科技轉變。人工智能的不斷開拓創新是為了幫助人類能夠更好地生活,我們應該注重人工智能的發展推進,將其廣泛合理地應用到生活的實際中去。
1 訊飛超腦計劃目前取得的階段學習研究成果
1.1 訊飛超腦計劃關于我國現階段關于高中生學習教育的人工智能成果
隨著近年來教育電子多媒體設備的投入普及使用,使目前的高中老師在課堂上更習慣用電子化的教學方式來替代傳統的板書課本單一枯燥的教學,與此同時,現階段高中生也同樣具備使用移動互聯網的條件,這樣就使得科大訊飛超腦計劃的教育產品可以形成以下的模式如圖1所示。
采用此智能的學習模式可以使我國的高中生接受公平的最好的教育,這就需要借助人工智能的幫助來使老師提高自身的教育水平,使高中生豐富并開闊自身的視野。課堂教學包括了在線課堂、暢言交互式多媒體教學系統以及暢言智能語音等,這種新穎的課堂教學模式使原本單一的教學方式變成了思想上任意遨游的知識海洋;智能考試包含了標準考場、英語四六級網上閱卷、普通話與英語口語測試等方面,智能考試系統從字跡工整的程度、詞匯量的豐富度、語法的正確性與通順性等多個方面來評判考試試卷,加上多年來的不斷改進,人工智能的評判方法跟相關專家的人工試卷評判的相似度相差無幾,很大程度地增加了試卷評判的效率性與公平性;學習產品與教育評價更是覆蓋到了從低到高的各個層面的產品組織結構,更有利于高中生的學習與應試教育的公平性。
1.2 訊飛超腦計劃對于提高人類生活水平的成果
隨著人工智能技術在經濟、教育、文化、娛樂等領域的不斷應用,使人們的生活質量水平得到了很大程度的提高,人工智能帶來的方便快捷對于人類的發展進化與物質文化的進步產生了不可忽視的作用。隨著訊飛超腦計劃的推出,一方面,可以把人類從繁重的勞動中解放出來,很大程度地提高人類生產生活的效率與質量;另一方面,人工智能的進步會極大地革新人類的思維方式,使人們能夠多角度地認知世界,加深對人類對自身所處的宇宙地位的思考,利于人不斷地探索奧秘,進一步推進人類社會的進步。
2 訊飛超腦計劃下人工智能對于未來生活的影響及其發展趨勢
2.1 訊飛超腦計劃下人工智能對未來生活的影響
由于訊飛超腦計劃是感知智能結合認知智能的再創新,使得未來機器將會實現高水平的感知智能,具有更多的包括語音識別、手寫識別以及圖像識別的更多智能感知能力與實現包括智能客服、人機交互等的取代人類腦力勞動的認知智能突破。所以說訊飛超腦計劃下的人工智能在未來的教育、經濟、文化、社會結構等未來生活的各個方面都會產生重大影響。在教育上,人工智能的應用優化了課堂結構,使學生能夠實時接受外界的新知識以及與時俱進的教育模式改革;在經濟上,人工智能的高效能與高效率會明顯提高經濟效益,用人工智能來進行財務管理有助于縮減不必要的人工勞務開支與相關的培訓費用,利于經濟的變革與提高;在文化上,人工智能對于人類語言文化與圖像處理上的優勢日益凸顯出來,可以確定的是人工智能的發展將會深入到人類生活的各個層面中去。
2.2 訊飛超腦計劃下人工智能的未來發展趨勢
隨著人工智能的不斷演進,人工智能從最初能存會算的計算智能階段,到后來的能聽會說、能看會認的感知智能階段,最后再到訊飛超腦計劃下提出的讓機器能理解、會思考的認知智能階段,未來的人工智能在語言理解、知識表達、聯想推理以及自主學習等方面都將會取得很大的進展。
3 結語
人工智能對于未來生活的影響是多方面的,在未來生活的各個方面都十分顯著。與此同時,訊飛超腦計劃下的人工智能不斷的改革創新與發展,也將更快地推動人類的發展,人工智能與人類的生活是互相影響又相互制約的。人工智能的不斷發展給人類的未來生活帶來了很大程度的改變,人類在不斷開拓人工智能的領域時也應不斷提高自身能力與素養,以適應人工智能帶來的不斷創新和改變。
參考文獻:
[1]張妮,徐文尚,王文文.人工智能技術發展及應用研究綜述[J].煤礦機械.2009,30卷(2).
關鍵詞:人工智能;圖形編程;創新實踐
近年來,人工智能已成為一個高頻詞,各種與人工智能相關的智能家居、自動駕駛、智能語音、圖像識別等新技術,深刻影響著社會的方方面面,也逐步改變人們的工作及生活方式。許多國家已經開始積極嘗試,大力推進小學人工智能教學。2017年,國務院正式頒布《新一代人工智能發展規劃》,明確提出了“在中小學階段設置人工智能相關課程,逐步推廣編程教育”;如今,計算思維培養又成為熱點。在這樣的一個時代背景下,學校和教師有責任和義務組織、引導學生去接觸、了解、學習、應用人工智能技術,以適應未來學習和工作環境的變化。人工智能涉及的學科內容較為廣泛復雜,小學生相對年齡較小,儲備的相關知識較少,學校應如何在小學階段有效開展人工智能教學,推進人工智能教學真正落地?筆者結合自己的教學實踐,從“巧”借活動、“巧”設場景、“巧”編程序、“巧”創項目等方面,積極探索小學人工智能教學的推進路徑。
一、“巧”設場景體驗人工智能
人工智能的知識結構具有較強的邏輯性和抽象性,與之前信息技術課上所教的內容相比,難度及復雜性更高。在日常人工智能教學中,教師應根據學生的心理特點以及不同教學要求,改變教學方式,把體驗搬進課堂,讓學生通過具體的體驗活動逐步理解人工智能的相關知識,把重難點從對概念、原理、技術的學習轉換到了解相關概念、技術實現的過程、體驗人工智能技術的應用上。豐富有趣的教育實踐活動可以讓學生在愉悅的教學情境中,從不同的思維角度、用不同的思維方式來認識和理解與生活密切聯系的一些人工智能概念,如機器學習、大數據、神經網絡等,體驗人工智能在實際生活中的應用。例如在《人臉識別》一課教學中,需要讓學生了解人臉識別技術的應用、影響、實現過程和原理,其中人臉識別的原理和過程較為復雜,如果教學中只進行簡單說教,無法有效達成教學目標。本課設計了一個“人臉大比對”體驗活動,活動分兩個部分,第一部分就是通過百度AI開放平臺里的人臉檢測與屬性分析功能,體驗人臉檢測中具體檢測哪些屬性;第二部分就是通過人臉對比功能,完成教師提供的三組人像照片的對比分析。在第一部分的實例體驗中,學生通過自己上傳照片進行檢測,主要是通過對人臉的面部、膚色、毛發、眼睛、嘴、鼻和輪廓等150個特征的精準定位來準確地識別和計算出一張人臉的特征和屬性信息,包括年齡、性別、顏值、情緒、是否戴眼鏡等。這樣的體驗讓學生非常感興趣,也能很好地理解特征提取的過程。第二部分的體驗是人臉對比,教師提供給學生三組照片,第一組是一對相似度很高的雙胞胎;第二組是同一個人戴口罩和不戴口罩的照片;第三組是同一個人的兩種表情。學生先自己觀察,記錄三組照片的結果,再上傳照片到百度AI體驗人臉對比過程,并查看對比結果。經過體驗,學生認識到在現有的技術下,人臉識別的準確度還是非常高的,對人臉識別的過程也留下了非常深刻的印象。
二、“巧”編程序理解人工智能
從當前人工智能技術應用的實際情況分析來看,主要應用領域為大數據及機器學習,這些功能的實現得益于算法的不斷完善。可見,算法學習是實現人工智能的關鍵,而對算法的學習又是計算機編程教學中的一大難點。推進小學編程教學將有利于幫助學生理解人工智能的相關知識。小學生相對抽象思維偏弱,采用圖形化的編程教學,更加有利于他們接受,有助于提高學習的積極性。通過編程教學引導學生學會分析問題、抽象與建模、設計算法、編寫程序腳本,在驗證過程中不斷改進和完善,并最終實現問題的解決,能有效培養學生的計算思維,并過渡到對人工智能所需要的其他知識的學習上。例如在五年級的《創編游戲》教學中,情境任務是設計制作一個貓捉老鼠的小游戲,目標是讓學生認識“碰到顏色”“如果……那么……”等指令,能夠用它們的組合來編寫判斷角色是否碰到邊緣和老鼠的腳本。人工智能的概念主要體現在“碰到顏色”和“如果……那么……”語句的應用上,“碰到顏色”是偵測識別,“如果……那么……”則是邏輯判斷的處理。在教學中,首先通過問題引導學生思考完成游戲需要考慮哪幾個要素,從問題和答案中幫助學生提煉出“舞臺”“角色”“動作”三個要素,進而幫助學生厘清實現游戲功能的基本思路。在程序編寫中,讓學生具體體驗偵測模塊的編寫與判斷語句的應用。簡單的編程實踐,能讓學生逐步了解人工智能的基本概念及其實現流程。
三、“巧”創項目實現人工智能
知識的學習必須與學生的生活實際結合起來,如果學生在掌握人工智能知識和技能后能將所學知識應用于實踐,解決生活中的實際問題,那么這樣的學習就是真實有效的。學生通過設計創作具體作品,可以大大增強分析和處理問題、解決實際問題的意識和能力,培養邏輯思維和動手實踐能力,這也是人工智能教育的方向和目的。根據學生的實際生活經驗,教師將人工智能的具體應用案例巧妙引入課程中,引導他們科學地確定項目內容;通過對項目的梳理分析,建立邏輯關系和模型;用編程語言描述邏輯關系;采用硬件設備實現人工智能的具體功能,這種基于真實任務的學習活動,能有效促進學生的理解。例如四年級實踐小組的“智能垃圾桶”作品,便是以垃圾桶為課題進行探究,先讓學生對現有垃圾桶的優劣勢進行分析,思考怎樣改造垃圾桶才能真正實現智能化。通過教師的引領和自身觀察,學生很快認識到智能垃圾桶應該具有的功能:一是能檢測什么時候有人投放垃圾;二是垃圾桶蓋能自動開啟和關閉。確定了目標之后,就是思考達成上述目標需要哪些條件。學生根據已有知識,確定可以用超聲波檢測是否需要打開垃圾桶蓋子,打開和關閉動作可以通過舵機和連桿來實現。通過探究后,學生根據設計的方案自主完成了智能垃圾桶的作品搭建,接下來就是通過編寫程序和不斷調試驗證來實現預期的功能。作品完成后,學生可以根據實際情況進行功能的增加與修改,如增加桶內垃圾超過一定高度時能自動提醒的裝置等,讓智能垃圾桶更加智能。本次作品的創作過程,不僅鍛煉了學生分析實際問題、解決實際問題的能力,又鍛煉了他們的編程思維和計算思維,更重要的是體驗了自己創作人工智能作品的樂趣和成就感。在人工智能應用日益普及的今天,人工智能課程進入小學課堂是大勢所趨。在小學階段開展人工智能課程教學,主要是為了讓學生掌握人工智能知識,體驗和運用人工智能技術,培養學生的信息技術核心素養、創新意識、實踐應用能力,為學生適應未來社會打下扎實的基礎。但人工智能教學具有其特殊性,如何有效推進人工智能教學,還面臨著許多需要解決的問題。學校和教師應盡最大努力創設更好的人工智能教學環境,探索更有效的教學策略,促進學生對人工智能相關知識的學習。
參考文獻
[1]丁華.人工智能教學中對學生計算思維的培養[J].華夏教師,2020(13):42-43.
[2]徐欣彥.引入體驗活動創新小學人工智能教學模式[J].中小學信息技術教育,2019(9):62-64.
關鍵詞:人工智能;研究型實驗教學;民族關系
人工智能是計算機科學的一個分支,是一門研究運用計算機模擬和延伸人腦功能的綜合性學科,對它的研究涉及控制論、信息論、系統論、語言學、神經生理學、數學、哲學等諸多的學科及領域,是一門綜合性的交叉學科[1]。
人工智能的研究、應用和發展,在一定程度上代表著信息技術的發展方向,同時信息技術的廣泛應用也對人工智能技術的發展提出了迫切的需求。今天,人工智能的不少研究領域如自然語言理解、模式識別、機器學習、數據挖掘、智能檢索、機器人技術、人工神經網絡等都走在了信息技術的前沿,有許多研究成果已經進入人們的生活、學習和工作中,并對人類的發展產生了重要影響[2]。
實踐教學環節在大學教育中是一個非常重要的教學環節,是提高人才素質與能力的重要途徑。人工智能課程除了具有較強的專業性之外,還具有突出的實踐性,為了能深入理解和掌握所學內容,必須把講授和實踐結合起來。本文結合該課程實驗教學,將研究型教學的理念引入到實驗教學,并對教學過程中的經驗和問題加以初步的總結。
1研究型教學模式背景
研究型教學是相對于以單向性知識傳授為主的傳統教學提出的,是指教師以課程內容和學生的學識積累為基礎,引導學生創造性地運用知識和能力,自主地發現問題、研究問題和解決問題,在研究中積累知識、培養能力和鍛煉思維的新型教學模式。研究性教學是對現有的大學課堂教學模式的突破。有利于開發大學生的創造潛能,提高學生適應社會需要的創造性和創新能力,充分展現現代大學培養人才、發展科學、服務社會的三大基本職能[3]。
19世紀初,德國著名教育家洪堡最早提出了教學與科研相統一的原則,為研究型教學模式的發展奠定了基礎。20世紀50、60年代,美國著名教育心理學家布魯納提出了著名的“發現教學模式”[4],成為后來探究性學習和研究型教學的先導。20世紀70年代,美國研究教學專家薩奇曼正式提出了研究訓練教學模式。他認為學生會本能地對周圍新奇事物發生興趣,并想方設法弄清這些新奇事物背后究竟發生了什么,這是一種進行科學研究的可貴的動力。
自此,研究型教學理念開始廣泛使用。現在,哈佛大學、牛津大學、劍橋大學等世界著名大學,都非常注重學生能力的培養,普遍采取了研究型教學模式。以美國高校為例,雖然美國高校83%的教師在課堂教學中主要采用講授法進行教學,但在整個教學過程中都滲透著研究型教學的方法,如積極引導學生參與教學過程,開設研究性課程,引導學生積極主動地參與科研活動等。我國自20世紀90年代初推出211工程建設以來,清華大學、北京大學、人民大學、復旦大學、浙江大學等一些重點大學都提出了建設世界一流的綜合性研究型大學的目標。這些高校在實現從單向知識傳授的傳統型教學向關注創新性教育的研究型教學轉變方面進行了許多有益的嘗試。
2研究型實驗教學
本科教學不僅要培養學生的應用能力,還要培養學生具備基本的科研素質。大學是培養未來一線創新人才的主要基地,必須從本科教學人手,深入探索研究型教學的手段和方法,才能滿足未來經濟增長和社會發展的需要,才能符合建設研究型大學的需要。特別是近幾年來我國對科研的投入不斷增加,研究生招生規模逐年增大,本科高年級學生打算繼續讀研的也不在少數。而人工智能是計算機相關學科非常活躍的研究課題,其涵蓋的分支非常廣泛,如模式識別、機器學習、數據挖掘、計算智能、統計學習理論等,都是目前國際和國內熱門的研究方向。
人工智能課程在計算機專業人才培養方案中占據著重要的位置。在專業理論方面,它承續了離散數學中的邏輯知識;在專業方法方面,是數據結構、算法分析與設計的繼續;在專業工具方面,是面向對象程序設計的生動實例。并且人工智能的每一部分內容都可以作為一個深入的研究課題,課堂上講解的內容不可能面面俱到,學生們也不可能對人工智能的每一領域都做很深入的學習。并且人工智能涉及很多的數理邏輯知識,有些顯得難以理解,并且往往讓學生感到比較枯燥,學生的學習興趣就漸漸淡薄,學生往往被動“聽講”,難以獲得預期的教學效果。
針對這一特點,在人工智能教學中,如何引導學生系統學習人工智能的知識、激發學生的研究興趣,樹立目標意識找準研究方向,為未來的科研工作打下基礎,研究型實驗教學就成為了人工智能課程教學的一個重要環節和必然選擇。
2.1實驗教學中加強學生的研究導向
在實驗教學中,如果照搬一些教材中的例子或習題教學,一方面學生們會缺乏興趣,另一方面學生對這個領域的知識缺乏全面的了解。應不斷提出一些學生們感興趣的開放性課題,比如基于支持向量機的人臉識別、基于膚色的人臉檢測,基于內容的圖像檢索等,培養學生們的學習興趣,讓學生們逐漸深入的學習某一領域的知識。比如BP神經網絡,在模式識別、經濟數據分析、生物信息學、數據挖掘等眾多領域都取得過成功應用,是一種具有強大的非線性學習能力的計算智能技術。然而BP神經網絡算法自身也存在著一些缺點,如會有局部最小解、解受初值影響較大、理論解釋不完善等,而支持向量機在這些方面具有顯著優點。我們可以設計一個人臉識別的實驗,用神經網絡和支持向量機分別實現,并作以比較。讓學生們在了解人工智能新技術的同時,也培養學生們如何分析問題、解決問題的科研能力。
2.2人工智能課程實驗
該課程是一門對實驗技術有較高要求的課程,對于基本原理和方法的實現,要求學生進行嚴格的計算機專業技能訓練和培養良好的科研工作作風。因此對課程中的技能及技術性內容,除單獨進行必要的基礎訓練外,還融入到綜合和研究型試驗中,通過多次反復實驗練習,達到牢固掌握人工智能原理和人工智能的問題求解技術的目的。
該課程的實踐環節主要是實踐項目,由具備較強工程實踐能力的任課教師和助教負責,學生可在全天候開放的專用機房完成。在實踐環節的設計上,我們嘗試把驗證性實驗和開發性實驗相結合,結合實驗教學進度,安排相應的開放實驗,開放性實驗以科學研究實驗為主。并在課程的教學過程中,不斷深化和擴展教學內容,結合人工智能學科的發展趨勢和本院老師的最新研究成果,對實驗內容進行更新。
課程主要設置三種層次的實驗:1)基本原理和算法編程,測試例設計及程序測試實驗;2)分析綜合實驗;3)研究型設計實驗。整個實驗包括課前討論、實驗操作、實驗報告、結果討論、總結提高等六個環節。對于綜合性和研究型實驗,把學生分成5個人一小組,每小組選做其中的一個。學生從指導老師處了解到實驗課題后,即著手查資料,研讀文獻,鉆研有關理論。在此基礎上,學生先提出實驗方案,經與老師討論后,即可開始實驗研究。
3實驗平臺的構建
民族關系問題對被訪對象,特別對少數民族被訪對象是非常敏感的問題,對民族關系的評價又存在個體層面、群體層面、不同階層人群之間的差異,因此,僅僅以傳統的文獻分析、問卷統計和現場觀察等民族學方法來進行調查,得到的數據會存在較多誤差。
因此結合本校的民族特色和民族學領域獨特的研究優勢,將信息認知技術引入民族關系研究,運用圖像、心電和腦電數據進行分析,將分析的結果和心理場景測試及民族學調查結果進行相互印證和參數修正,從而獲得盡可能客觀的數據,這些數據將有助于建立一個客觀、完備、科學的民族關系監測體系,并真實全面地評估民族關系,從而使決策機構及時做出正確的決策。基于多信息融合的民族關系監測預警系統總體框圖如圖1所示。
目前該平臺已經搭建,由北京市公共安全信息監測平臺建設、北京市公共安全信息監測平臺建設關鍵技術研究、基于多源信息融合的民族信任研究等多個重大項目支撐。在這個平臺的下面,涉及到人臉識別、表情識別,視頻監控、認識等領域,小波分析、神經網絡、支持向量機、模糊數學、信息融合等人工智能知識得到了具體的應用。學生可以根據自己的興趣愛好,自愿參加到該平臺下的某一項目,切實對自己所學知識有一個深刻的理解和掌握。
4結語
研究型實驗教學激發了學生的學習興趣,不但使學生更好地掌握了人工智能的基本概念、基本理論和基本技術,也切實提高了學生的實際動手能力和編程能力。研究型實驗教學在實踐過程中還有以下問題需要改進:
1) 研究型實驗教學的理念很難普及。很多教師對研究型教學模式的內涵未能準確把握,把研究型教學模式等同于學生實習或者寫論文。
2) 研究型實驗教學的輔導老師素養需要提高。研究型實驗教學作為體現創新教育要求的現代教學模式,需要的不是知識傳授型的教師,而是高素質的研究型教師。教師不僅是單一的教者,更應該成為一個學者,教師不僅要有研究型教學的教育觀念、快速接受新知識的能力和高超的教學技能,要能夠合理地規劃和設計實驗內容。
3) 需要建立一套合理的學生學業和教師績效的評價體系。
參考文獻:
[1] 王萬森. 人工智能原理及其應用[M]. 北京:電子工業出版社,2007.
[2] 蔡自興,徐光佑. 人工智能及其應用[M]. 北京:清華大學出版社,2004.
[3] 李得偉,張超,李海鷹. 大學工科專業課程實施研究型教學的探討[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大學研究性教學的理念探析[J].教育導刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng
(College of Information Engineering, Minzu University of China, Beijing 100081, China)
關鍵詞:人工智能;傳媒企業;新媒體;發展
一、引言
人工智能(ArtificialIntelligent,AI),是一門前沿交叉學科,涉及計算機科學、腦科學、神經生理學、心理學、語言學、邏輯學、行為科學、生命科學,以及信息論、控制論和系統論等領域。1956 年達特茅斯會議提出:讓機器能像人那樣認知、思考和學習,即模擬人的智能。《新一代人工智能發展規劃》(國發〔2017 〕35 號):跨界融合成為重要經濟模式;加快AI融合,發展智能化經濟、建設智能化社會,構筑知識、技術、產業三方互動融合及其人、機、文互相支撐的良好環境;發展智能服務(包括智能教育、智能醫療、智能健康和養老);推薦社會治理智能化(涉及政務、法庭、城市、交通軍民融合、環保等);加強人工智能領域軍民融合。智能教育、智能醫療、智慧法庭、智能交通、智能農業等行業的智能化升級,都需要新聞出版行業知識服務的支撐。
二、傳媒企業現狀分析
近年來,隨著國內媒體企業的不斷融合發展,大量媒體信息不僅通過圖書、期刊、報紙、廣播、電視等形式傳播,還向網站、抖音、微信等新的傳播渠道延伸。與此同時,國外媒體企業對人工智能技術的探索及應用也日益重視。(1 )傳媒企業非常重視人工智能技術,不斷增強其引導能力和傳播效果。(2 )人工智能技術對媒體采―編―發流程的影響很大,涉及傳媒企業生產各個環節。(3 )人工智能算法推薦新聞、合成主播等智能技術應用。例如:個性化信息流分發、今日頭條算法推薦、AI合成主播、“媒體大腦”。(4 )人工智能對傳媒企業影響深遠,促進其新業態產生及媒體融合發展。
三、傳媒企業機遇與挑戰
人工智能與媒體各生產環節深度融合、提質增效,但也面臨著不少機遇與挑戰。① 機遇。促進智能升級:各環節變得更加智能化(選題策劃、編輯、校對、排版、印刷、營銷等);出版行業與其他行業深度融合。② 挑戰。AI技術積累和人才儲備不足;資源整合難度比較大:大量高質量專業知識資源、數據格式不統一;傳媒企業和讀者之間、生產與發行之間渠道不夠通暢。(1 )人工智能技術水平領先于觀念認知水平。當前,傳媒企業對人工智能的認識最常見的誤區表現在觀念意識、認知維度、重視深度三個方面:① 觀念意識,運用人工智能技術加速媒體融合,認識不充分、不到位;② 認知維度,在媒體企業生產領域的各環節中,還不能清楚地認識到人工智能技術應用效果;③ 重視程度,清晰的發展目標、可行的實施途徑和發展的戰略規劃,這三方面是傳媒企業目前還比較缺乏的發展因素。(2 )傳統的媒體企業較難適應變革。① 組織架構、業務流程難匹配。② 資金受限。有關人工智能的軟件、硬件引進與研發,以及數據庫平臺搭建與管理的資金投入都較高,可用資金很難在短時間內有效利用。③ 人才隊伍建設跟不上媒體智能化發展要求,缺乏媒體智能化發展所需的復合型人才,特別是在技術、運營等部門,領軍人才少之又少。大多數傳媒企業出現人才留不住、用不好的情形。(3 )傳統媒體企業人工智能技術經驗不足。科學技術的有效利用是媒體企業生產和可持續快速發展的重要因素。如何科學合理地研發、運用智能化技術,開發滿足市場需求的新形式,促使智能化應用水平與人工智能技術本身發展水平相匹配,是媒體企業從傳統向智能化轉型的重中之重。(4 )用于人工智能算法的訓練數據是傳媒企業智能化發展的重要砝碼。提高人工智能技術的應用水平,大量的高質量數據積累是不可或缺的。當前,不少媒體企業積極、大膽嘗試,大量的文檔、圖片、視頻等數據資源,需要強大的財力和物力去支撐“數據清洗”及其相關工作,并最終生成高質量的信息化數據。(5 )用戶的數據安全與隱私保護成為急需解決的難題。隨著媒體企業的快速發展智能化,同時也產生了大量數據,因此,保障用戶個人信息、行為數據的安全,尊重用戶的個人隱私,提供精準、優質的服務就顯得尤其重要。
四、傳媒企業發展建議和趨勢展望
(一)發展建議
隨著各種媒體的不斷融合發展,各行業對于人工智能的廣泛應用不僅是一種普遍發展趨勢,而更是媒體企業掌握變革發展的金鑰匙。只要能在智能化技術應用領域取得領先地位,媒體企業成功地進行變革發展就多一分把握。而且隨著科學技術的不斷快速進步發展,人工智能技術的應用將持續推動媒體企業的發展與變革。(1 )戰略、路徑的智能化發展。傳統媒體企業應當根據本身實際情況和發展特點早謀劃、早制定智能化發展路線,緊抓人工智能、大數據、云計算等機遇,探索人工智能技術的發展路徑,贏得企業市場競爭優勢。發揮傳統媒體企業資源豐富的優勢力量,增加人工智能技術的自主研發投入,掌握核心,打造自主可控的智能化媒體平臺,不斷開拓先進技術的研發途徑和探索其可行的引進渠道。(2 )從傳統思維轉變到人工智能發展。隨著互聯網技術的廣泛應用,傳統媒體企業有了巨大壓力。不論愿不愿意去直接面對,傳媒企業的人工智能發展變革道路已經箭在弦上。因此,傳統媒體企業需要利用全新的觀念來迎接人工智能技術的快速發展,從而探索更適合的體制機制、組織結構、工作流程、人才隊伍,進行全面轉型。加快轉型,改變思維,增強媒體人對人工智能技術應用的深刻認識,提高技術運用水平對內容創新起的重大作用的準確認知,實時調整人工智能技術在媒體企業中應用模式。(3 )企業體制機制變革,重點開發技術優勢。隨著人工智能技術的不斷發展,媒體企業既要提高技術開發的資金投入,又要創新變革媒體企業的生產體制機制,實現人工智能技術與媒體生產要素的完美整合,探索資源、人才,管理、功能、產品的融合發展路徑。(4 )推動內容完善創新,增強智能技術引領。媒體企業在引入智能技術的基礎上,不斷地推動前沿科技技術充分地對內容進行創新,有機結合內容與創新形式。媒體企業既要憑借人工智能技術不斷地深入研究新媒體傳播形式和銷售渠道,還要不斷地改進產品形式形態、提高產品優質品質。(5 )重新整合媒體資源,加快發展變革。人工智能技術與5G、大數據、云平臺、物聯網等科學技術影響著傳媒企業的發展趨勢。傳統媒體企業需要不斷地跨界整合并完善市場技術資源,在生產產品、終端、渠道、人員等方面實現跨越發展,掌握媒體市場主動權,構建合理、完善的信息傳播鏈。(6 )重視挖掘數據,重塑核心競爭力。傳統媒體企業應重視將大數據的信息分析能力融入進媒體產品生產的全流程中,從基于經驗升級到基于數據,探索并建立傳媒企業數據鏈。(7 )打造智媒體團隊,創辦新媒體企業。新媒體企業需要智能編輯記者人才,未來的媒體人才隊伍應當是智能型人才團隊,即“全媒體人才+人工智能工程師”。媒體企業需要科學制定全媒體、智媒體人才的發展整體規劃,加強人工智能技術媒體人才培養;加大人工智能技術業務培訓,提升協同創新能力;探索專家型編輯記者的培養方式,探索人工智能技術能力提升的有機結合,架構智能人才隊伍培養和發展路徑。
(二)趨勢展望
隨著人工智能技術的不斷發展,傳媒企業也面臨著將要進行變革創新的局面,從生產內容、分發產品,到內容表現、銷售管理,其工作流程和生態環境發生了巨大變化。1.融合發展智能化人工智能在媒體融合發展中起到了巨大作用:提高了媒體全要素的生產率;人工智能將推動媒體更好地利用現代化體系中的功能作用。媒體融合發展的重要方向是智能化新型媒體企業平臺,創建信息服務智能媒體庫。2.新媒體形態顯現多種多樣傳媒形式和內容呈現方式逐漸涌現,不斷改革、發展、演化迭代,智能化科技媒體產品健康發展。3.關鍵核心技術研發從事高科技技術研發創新的公司企業發展的重點是依托以芯片、算法和數據為核心的人工智能系統,提供優質高效的技術服務,促進多種人工智能技術進一步發展。媒體企業通過自主研發或與人工智能科技企業合作,為編發聯動工作提供有效路徑。4.媒體專業界限變寬媒體人的角色邊界逐漸寬泛,優質算法和吸引廣大用戶是媒體企業發展的兩大重要因素。媒介素養將更進一步地深度重構,傳統意義上的以文科專業為主的體系將不斷調整、改變,跨專業、復合型已經是對傳媒人的更進一步要求和代名詞。5.音、視頻生產消費晉級人工智能技術發展快速發展,音視頻內容生產效率不斷提升,創新創意空間進一步拓展,音視頻內容消費迅猛增長,人機交互界面重塑,媒體企業新流量拓展,取得良好經濟、社會效益。6.版權保護意識及能力增強人工智能、物聯網、區塊鏈、大數據等前沿科技技術將進一步解決版權保護問題,人工智能技術強力支撐內容變現、盈利模式改革創新,增加傳媒版權領域新規則。
五、結論
綜上所述,雖然人工智能的發展歷程只有短短的幾十年時間,但是對于每個階段內人工智能的發展都推動了人類社會發展。傳媒企業為了避免被淘汰,必須合理地與人工智能結合應用,才能拓展更大的生存空間,贏得更好的發展。
參考文獻
[1]周皓.傳媒文化創意產業發展策略研究[J].風景名勝,2019(06):290-291.
關鍵詞 信息技術 學業水平考試 教材分析 大綱分析 題型分析 應對策略
一、了解高中信息技術學科的教學內容。
針對學生不同的信息技術基礎,教學內容有較大的靈活性,既保證起點水平較低的學生能夠適應,也給學有余力的學生提供進一步發展的空間,使所有學生都能得到充分的發展。
高中階段信息技術課的內容包括:信息技術基礎、網絡技術應用、多媒體技術應用、算法與程序設計、數據管理技術和人工智能初步等幾個模塊,每個模塊又可劃分成若干教學單元。其中信息技術基礎是必修模塊,其他幾個模塊均為科目內選修模塊。
根據課程標準的要求,每個學生要完成必修模塊和至少一個選修模塊才能取得高中畢業資格。每個模塊的內容如下:
(1)信息技術基礎模塊是培養學生信息素養的基礎,也是學習其他模塊的基礎,具有普遍價值,是高中階段信息技術課的必修內容。這部分內容著重強調在大眾信息技術應用的基礎上,讓學生親身體驗理性建構的過程。
(2)網絡技術應用模塊由網絡技術基礎、因特網應用和網站設計與評價三個單元組成。
(3)多媒體技術應用模塊是引導學生通過親身體驗,認識多媒體技術對人類生活、社會發展的影響;學會對不同來源的媒體素材進行甄別和選擇;了解多媒體信息采集、加工的基本原理;掌握應用多媒體技術解決問題的思想與方法;初步具備根據主題表達的要求進行多媒體作品的規劃、設計與制作的能力。
(4)算法與程序設計模塊是介紹計算機解決應用問題的基本方法,通過本模塊的學習,要求學生了解計算機解決問題的基本過程和思想,掌握程序設計語言,并通過列舉和分析典型算法,培養學生邏輯思維能力 和解決實際問題的能力。
(5)數據管理技術模塊以介紹數據庫相關知識為主,建議劃分為數據管理基本知識,數據庫建立、使用與維護,數據庫應用系統等三個單元。要求學生通過本模塊的學習,學會使用數據庫管理信息,處理日常生活中的問題,體會數據庫對社會生活的重要影響。
(6)人工智能初步模塊強調讓學生體驗典型人工智能技術的應用過程,了解其基本原理。主要劃分為知識及其表達、推理與專家系統、人工智能語言與問題求解三個單元。通過該模塊的學習,了解人工智能的基本概念和特點,會簡單使用人工智能語言解決問題;能夠用專家系統外殼開發簡單的專家系統;感受人工智能的豐富魅力,知道人工智能對人類學習、生活的影響,增強對信息技術發展與未來生活的向往和追求。
二、分析高中信息技術學業水平考試大綱
1、命題依據
高中信息技術學業水平考試,主要以教育部《普通高中技術課程標準(信息技術)(實驗)》和各省普通高中信息技術學科教學實施指導意見為命題依據。
2、考試范圍
高中信息技術學業水平考試范圍一般為必修學分規定的內容,主要包括必修模塊和一個選修模塊的內容。如貴州省2012年、2013年普通高中信息技術學業水平考試內容為《信息技術基礎》必修(粵教版)和《多媒體技術》,根據學生選修情況2014年普通高中信息技術學業水平考試內容為《信息技術基礎》必修(粵教版)和《網絡技術》。
3、普通高中信息技術學業水平考試能力要求
根據課程標準的要求,學業水平考試的能力要求由低到高分為A,B,C三級標準。
A級只要求學生了解和模仿,比如信息及其特征、信息加工概述、多媒體技術的概念與特征、計算機網絡的功能等。
B級要求學生能夠理解和獨立操作。比如信息的獲取過程、網絡數據庫的檢索、圖形圖像的采集、數字視頻的采集、網絡通信原理等。
C級要求學生能夠熟練操作和應用。比如文件的下載、文本信息的加工、表格信息的加工、Flash簡單動畫的制作、photoshop cs8圖像簡單處理、因特網的組建與設置、因特網的接入和使用等。
三 了解普通高中信息技術學業水平考試的形式和內容。
各省對普通高中信息技術學業水平的形式一般為紙質考試和局域網環境下的無紙化上機考試兩者之一,采用閉卷形式。下面以貴州省普通高中信息技術學科學業水平考試為例談談。
貴州省從2012年開始信息技術學科學業水平考試采用網考的形式,考生使用考試軟件,通過上機實際操作進行答卷。試題由計算機從題庫中隨機抽取智能生成,所有答題過程全部在計算機上進行。考試的內容根據各校的選修情況分為兩個部分(必修《信息技術基礎》、《多媒體技術》或《網絡技術應用》),共150分。
第一考信息技術基礎:滿分 90分;包括單選題15道,每道4分,共60分;操作題2道,word2003 文檔處理和excel2003表格處理,每到15分,共30分。
第二卷考選修:多媒體技術或網絡技術應用 滿分60分;包括單選題10道,每道4分;操作題1道,多媒體(flash8.0簡單動畫制作或photoshop8.0圖像處理)或網絡技術(frontpage2003),該題20分。
結語:我們在應對普通高中信息技術學科學業水平考試時,應當全面了解信息技術學科的教學內容,包括學習的重點、難點,根據教學內容和考試大綱的三個等級要求,學習上有取舍、抓住重點、突破難點。注重理論知識的掌握和思維能力的培養,實際應用能力和創新能力的培養。根據信息技術學籍卡考試形式,考試題型等,注意時間的安排,要有思維、有策略地完成信息技術學業水平考試任務。
參考文獻:
摘要:人工智能的迅速崛起,為老年健康管理提供了全新的途徑,在優化老年健康管理全過程中發揮著重要價值。與此同時,因其服務于老年人這一特殊群體,對道德倫理的沖擊表現得更加突出。當前,伴隨著我國政府對人工智能的高度重視、企業與醫療機構的積極探索,人工智能在老年健康管理領域已積累了部分經驗,取得了初步進展。然而目前人工智能在老年健康管理中的應用仍處于起步階段,面臨價格壁壘難以突破、信息孤島劣勢明顯、多方主體合作不足、專業人才稀缺等現實問題。推進人工智能與老年健康管理的深度融合,需要政府、醫療機構與養老服務中心、科技企業等多方聯動,構建配套管理機制,從而使人工智能更好地服務于老齡化社會。
關鍵詞:人工智能;老年健康管理;老齡化;養老問題
作者:向運華王曉慧(武漢大學社會保障研究中心,湖北武漢430072)
人口老齡化是21世紀我國經濟社會發展的重大國情,截至2018年底,我國60周歲及以上人口有2.49億,占總人口的17.9%。人口老齡化態勢加劇的同時,空巢老年人占比持續攀升,獨居老年人群健康狀況不容樂觀,有74.7%的老年人患有至少一種慢性疾病。城鄉失能、半失能老年人口近4063萬,上門看病、康復護理等醫療健康類服務需求始終居于老年人各類需求首位。總書記明確指出“為老年人提供連續的健康管理服務和醫療服務”,健康老齡化成為健康中國時代和老齡化時代的重要命題。
萬物互聯的加速到來與人工智能技術的迅速崛起,正在改變著人們的社會資源獲取方式和生活方式。AlphaGo大勝人類棋手,標志著人工智能已在某些領域走到了人類智慧的前列。以互聯網為載體和AI為實現工具的經濟發展新形態正在逐漸形成,為社會各領域創造了前所未有的機遇,也給老年健康管理模式的突破與創新提供了現實可能。智慧健康養老由此產生,其最大的特點在于大數據收集、需求的智慧決策與服務的精準投放。2017年工信部、民政部和衛計委聯合印發《智慧健康養老產業發展行動計劃(2017-2020年)》,強調利用新一代信息技術產品推動健康養老服務智慧化升級。各地積極開展智慧健康養老應用試點,打造“硬件環境+智能設備+互聯網信息平臺+居家養老服務”的健康養老生態系統。如何發揮人工智能技術在老年疾病預防、診斷、緊急救助、治療與康復中的作用,如何有效聯接醫療服務機構以確保老年人享受到更高效、更優質、更便捷的健康服務,是當前亟待研究的現實問題,這對于降低空巢老人獨居風險,緩解老年護理人員短缺問題,提高老年人的健康水平具有重要價值。
一、立場博弈:人工智能時代老年健康管理的機遇與隱憂
(一)人工智能的崛起
人工智能(ArtificialIntelligence,簡稱AI)起源于1950年“圖靈測試”的理念,其首次被公開提出可追溯到1956年“人工智能之父”McCartney在美國會議上的報告。隨后人工智能隨著技術的發展、社會的進步不斷發展,1960年人工智能已能夠理解自然語言、自動回答問題和分析圖像圖形等,20世紀80年代又獲得了學習和認知能力。21世紀以來,物聯網的加速普及、大數據的崛起、云計算等信息技術的突破,人工智能迎來了發展高峰,逐漸形成了深度學習、跨界融合、人機協同、群智開放、自主操控等新的特征,開始具有自我診斷、自我修復、自我復制甚至自我創新的能力①。人類相繼進入了網絡社會時代、大數據時代與人工智能時代,三者共同構成了新的社會時代②。
關于人工智能的概念,國際人工智能專家N.J.Nilsson將人工智能視為怎樣表示知識、怎樣獲得知識及怎樣使用知識的科學③。其后,學者對人工智能的概念從類人、理性、思維與行為等四個方面著手定義,有學者進而從學科角度對人工智能進行了解釋,如國內學者吳漢東將人工智能定義為研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。綜合諸多學者對人工智能的認識,筆者認為人工智能的實質是基于人類的設定與要求,能以與人類智能相似的方式作出反應的智能機器或軟件。
人工智能時代的到來,正在改變甚至顛覆人類現存的生產、工作與交往方式。2016年美國的《國家人工智能研究和發展戰略計劃》指出,AI系統在某些專業任務上的表現勝于人類。1997年國際象棋、2011年Trivia、2013年Atari游戲、2015年的圖像識別與語音識別、2016年AlphaGo等AI產品的問世與應用,成為AI超越人類的里程碑事件,見證了AI的智能水平和社會意義。近十年來,人工智能愈發廣泛地應用在社會各個領域。農業領域,人工智能應用于自動播插與灌溉、日常田間管理、采收與分揀、產品檢驗、虛擬在線銷售等產前、產中和產后各個環節,大大減輕了人類的勞動量④。工業領域,工業機器人廣泛應用于汽車、電子、家電制造等生產線,緩解勞動力供需矛盾的同時提高了生產效率。服務業領域,微軟“Cortana”、蘋果“Siri”、聯想“小樂”等智慧客服系統為大眾所熟知;幾乎所有股票交易員已被機器人取代,投資顧問、風險審查和安全防范監控監管都普遍智能化。公共服務領域中,人工智能亦發揮著日益重要的作用,如用人臉對比技術來篩查犯罪分子;人工智能輔助醫療診斷與手術;人工智能用于智能評測、個性化輔導等等。人工智能也開始進入藝術創作領域、心理服務領域。學界普遍認為,弱人工智能技術在當前已基本實現⑤。
(二)人工智能時代老年健康管理領域的機遇
當前,在新一代信息技術的引領下,物聯網迅速普及,大數據快速積累,算法模型與運算能力持續突破,智能行業應用快速興起,為我國人工智能的迅速崛起提供了現實契機。從人工智能技術層的語音識別、自然語言處理、圖像識別和生物識別等,到人工智能應用層面的工業4.0、智能農業、無人駕駛汽車、智能家居、智能金融、智慧醫療與智能教育等,均得到了爆發式增長。我國正處于醫療人工智能的發展高峰,2016年中國人工智能+醫療市場規模達到96.61億元,增長37.9%。據估計到2025年人工智能應用市場總值將達到1270億美元,其中醫療行業將占市場規模的五分之一⑥。人工智能在老年健康管理中的應用主要體現在通過生理參數識別設備和無線射頻識別裝置等智能采集老年健康數據,為老年人提供雙向、互動的居家健康監測、健康咨詢、健康評估、健康干預服務以及緊急救助服務,克服時空限制,將健康管理貫穿疾病預防、診斷、治療與康復整個過程。人工智能時代為健康管理尤其是老年健康管理提供了全新的途徑,在優化老年健康管理模式過程中具有重要價值。
第一,人工智能的發展為緩解醫護人員短缺提供了現實可能。據世界衛生組織公布的數據,歐盟關于每千人擁有護士數量的基本規定是不少于8人,挪威以17.27人位居世界第一,美國和日本分別是9.8人和11.49人,發展中國家例如巴西和南非,分別是7.6人和5.1人,然而我國每千人擁有護士數僅為2.36人。即使是按照大多數國家的5‰計算,我國護士缺口也多達350多萬,如果按照歐盟的標準,則缺口更大。與此同時,我國社區養老服務專職人員數量少且增長速度緩慢。民政部2009年開始統計社會服務職業技能人員中的養老護理員,截至2016年我國養老護理人員僅8528人。根據第四次中國城鄉老年人生活狀況抽樣調查結果,目前我國失能、半失能老年人口約為4063萬,占老年人口數的18.3%,按照3:1的國際標準計算,我國需要超過1300萬的護理人員。同樣,雖然國家大力推進醫養結合,將老年人作為重點人群納入家庭醫生簽約服務,但家庭簽約醫生覆蓋率仍不容樂觀。如何“以少足多”是擺在當前我國政府面前的重要議題之一。人工智能的崛起為化解這一醫療難題提供了新路徑。人工智能環境下,智能護理等機器的應用與推廣,大大減少了老年人對護理人員的需要,虛擬醫療助手替代護士,在醫生診療之外提供輔的就診咨詢、健康護理和病例跟蹤等服務,既減少了老年人前往醫院就診的次數,又有助于提高護理能力。顯然,這些對于緩解老年健康供需矛盾有積極意義。
第二,人工智能的發展為醫療機構提高服務效率提供了技術支持。一直以來,醫療服務效率都是備受關注和爭議的問題。醫療服務效率,即醫療機構在投入與產出之間的比率,是醫療服務領域的核心命題與重要目標。近年來,隨著我國醫療體制的不斷改革與發展,各級醫療機構的效率有了顯著提升,但受制于傳統醫療機構管理模式的慣性思維影響,醫療機構的服務效率與民眾期望仍有差距。新時代醫療服務效率的提升不僅需要制度的變革,也需要服務工具的革新。人工智能的發展為優化醫療服務提供了便利。一方面人工智能的應用降低了人力成本。醫學影像占醫療數據的90%,而且這一數據仍在攀升,年增長率約為30%,而放射科醫師數量的年增長率僅為4.1%,遠不及影像數據增長速度。借助AI技術分析醫學影像,將大大緩解醫院缺少醫生的壓力。此外,語音技術在醫療行業的普及,也正在將越來越多的普通醫生從日常機械式的醫案錄入工作中解放出來,提升錄入的效率,降低失誤率。另一方面,人工智能的應用也提高了醫療服務能力。人工智能輔助診斷技術應用在老年人某些特定的病種領域,幾乎可以代替醫生完成疾病篩查任務;智能手術機器人的應用既能保證精準定位,減少老年患者的疼痛,又能防止傳統手術易帶來的傳染疾病等危險;人工智能參與藥物研發,對于提高針對老年患者潛在藥物的篩選速度和成功率,縮短研發時間與成本有實際意義。綜上,人工智能的嵌入打破了以往醫治全程醫生親力親為的運作模式,智能機器的自主研判與決策能力,對于降低人力成本,大幅提高醫療機構、醫生的工作效率與質量,減少不合理的醫療支出有積極意義。
第三,人工智能的發展有助于提高老年人自我健康管理能力。多數疾病都是可以預防的,但是由于疾病通常在發病前期表征并不明顯,到病況加重之際才會被發現。而且由于老年人機體形態的改變和功能的衰退,對于疼痛和疾病的反應變得不敏感、不典型,很多病癥易被忽略或誤診,加上老年人行動不便,其中有多數老年人即使不舒服也不愿前往醫院進行診療。人工智能的應用大大緩解了這一狀態。人工智能技術與醫療健康可穿戴設備的結合可以實現疾病的風險預測和實際干預,實時監測老年人的生理參數,其雙向數據傳輸、在線溝通、便捷有效的特點,一方面可幫助老年人實時了解與掌握自身的健康狀況,享受個性化的健康管理和健康咨詢服務,滿足其健康教育需求;另一方面也能提高老年人自我健康管理意識,促進其積極參與自我健康管理和自我照顧,實現醫療衛生服務重心前移和全民健康管理。人工智能環境下的自我健康管理的實現延伸了傳統醫療的覆蓋能力,節省了傳統醫療方式的時間、空間成本及醫療費用,能夠有效緩解老齡化帶給整個社會醫療系統的負擔。此外,居家健康管理系統能為衛生管理者提供健康數據,有助于建立完備、標準化的居民電子健康檔案和區域衛生信息共享平臺,使政府突發公共衛生事件監測和應急體系的運轉更為高效、準確。
(三)人工智能時代老年健康管理領域的隱憂
萬物都有兩面性,人工智能同樣是把雙刃劍,人工智能從誕生至今,其對倫理的沖擊就不斷被討論。人工智能給老年健康管理帶來巨大便利的同時,也對道德倫理問題提出了重大挑戰。與人工智能的一般倫理問題相比,人工智能在老年健康管理中的應用因其服務于老年人這一特殊群體表現得十分特殊與突出。主要表現為兩個方面,一是老年人人格與尊嚴的多方面權益保障倫理問題更為加劇,二是老齡社會正義倫理問題更顯突出。
老年人人格與尊嚴的多方面權益保障倫理問題體現在隱私泄露、社會孤立與老年人的“物化”三個方面。首先,為更好地提供全方位健康管理服務,智能老年健康管理系統和智能設備需要采集老年人日常起居全時段、全方位、無盲區、長周期的海量生理數據,其中絕大多數的數據屬于隱私數據。這些數據通過簡單的分析和挖掘,就能得出老年人的生活習慣、身體狀況等信息,一旦被無意或有意泄露,極易被不法分子所利用以進行精準推銷甚至精細詐騙等違法活動,這對于易受騙的老年人群體來說無疑是巨大的隱憂,由此可能帶來的損失也不可小覷。《世界人權宣言》第12條規定任何人的私生活、家庭、住宅和通信不得任意干涉,他人的榮譽和名譽不得加以攻擊。正如一些學者認為我們應該對于弱勢群體運用特別的隱私保護政策①。然而目前我國的相關法律和政策還不盡完善,如有關病歷資料保護的法律或文件(《刑法》《侵權責任法》《醫療機構病歷管理規定》等)中多為宣示性條款,也尚無老年人隱私安全的針對性文件。如何保證健康數據在實時采集、傳輸、存儲、分析與使用過程中的安全,數據應當被保留多久、誰擁有隱私數據的訪問權等都是智能老年健康管理領域亟需解決的隱私方面的具體倫理問題。其次,智能機器監護老年人可能導致減少老年人社交、子女的陪伴。關于智能護理機器人的引入對老年人心理問題的影響研究表明,使用護理機器人的老年人易出現社會孤立現象,進而導致尊嚴受損②。過多的智能既會減少老年人外出和交流的頻率,也使子女或親朋責任感降低,對老年人的關懷止于虛擬問候,而不再是頻繁地看望與聊天。有學者認為,健康助手功能會使原本親近的護理關系轉換為遠程的虛擬的照料關系③。從而加劇老年人心理上的空虛感與孤獨感。如何緩解和調節老年人心理問題是人工智能在老年健康管理應用過程中不得不面對的問題之一。最后,老年人的“物化現象”也是值得關注的具體倫理問題。所謂物化,Kitwood對其的定義是:像對待無生命物質那樣對待人:推、拉、拽一個人,不把他當作一個有生命的個體。Astell曾認為輔助機器人可能會機械地控制使用者,并逐漸使其變得失去自主性④。智能護理機器人等操控式的服務過程有可能損害老年人自主意愿,老年人普遍認為不應該限制他們自主選擇的權利,如他們不希望所有人知道他們在家中跌倒,因為某些跌倒僅是小事,自己可以克服,他們認為只有自己需要幫助的時候才應通知別人。然而這與智能護理系統一旦發現護理對象跌倒,就立即發送消息給親人或醫護人員的護理策略相矛盾⑤。機器人應在何種程度上保障老年人的自主意愿,減輕其心理負擔,維護其尊嚴,是值得研究的課題。
老齡社會正義倫理問題主要體現在地區差異方面。由于我國國土面積大,各地區經濟發展水平并不一致,地區差異、城鄉差異問題都不容忽視。考慮到護理服務涉及人最基本的健康權利,然而由于經濟發展和收入水平不同,偏遠地區、農村的互聯網都不暢通,健康信息系統建設不到位⑥,老年人往往無力購買智能可穿戴設備、智能護理機器人等健康管理機器,貧富差距引發的社會資源分配不公問題凸顯。如何在研發和推廣智能設備中充分考慮老年人的購買力,是關乎社會正義的倫理問題。
二、現實考察:人工智能時代老年健康管理的困境
(一)人工智能時代老年健康管理的經驗
改革開放以來,尤其是進入21世紀之后,我國人工智能技術得到了巨大的發展。據中國電子信息產業發展研究院數據統計,2017年我國人工智能市場規模為216.9億元,比2016年增長52.8%,增長速度快于全球平均水平,2020年有望超過700億元①。其中,“人工智能+融合醫療、金融、教育和安防等領域企業”位居全球人工智能目標市場行業首位,總計占比40%。國家高度重視,企業與醫療機構積極探索老年健康產品的研發、推廣與應用,先后積累了一些經驗,取得了初步進展,為人工智能服務于老年健康管理奠定了重要基礎。
首先,信息化與大數據推動智慧醫療的發展,為人工智能在老年健康管理中的應用提供了技術支撐。信息化與大數據是人工智能有效嵌入的基本要素,因此醫療信息化的實現和醫療大數據資源的壯大是推動人工智能在老年健康管理應用的重要基礎。近幾年來,高速、移動、安全的新一代信息基礎設施建設加快,城市社區光纖網絡覆蓋率不斷提升,中國互聯網絡信息中心(CNNIC)的《中國互聯網絡發展狀況統計報告》顯示互聯網逐漸向高齡人群滲透,60歲以上老年人對互聯網的接觸率和應用率逐年上升。與此同時,健康養老服務信息平臺建設不斷推進,早在2011年,老齡辦和民政部門就在全國范圍內推進社區為老服務信息平臺建設項目啟動試點工作,試點項目50余個,據統計覆蓋老年人口僅3000多萬;2014年民政部和發改委確定在全國選取了42個地區推進養老服務業綜合改革試點,改革的重點之一即是加快信息平臺建設。2018年國務院《關于促進“互聯網+醫療健康”發展的意見》,強調推進遠程醫療覆蓋全國所有醫聯體和縣級醫院,支持高速寬帶網絡覆蓋城鄉醫療機構,建立互聯網專線保障遠程醫療需要。“互聯網+醫療服務”建設初具規模,各級醫療機構、養老服務機構積累了大量老年人有關的數據資源,其中包括老年信息數據庫建設與大數據共享平臺與服務平臺建設,為下一步人工智能的嵌入奠定了堅實根基。
其次,國家高度重視,政策與法律建設不斷推進,為人工智能在老年健康管理中的應用提供了制度基礎。一方面,為推動人工智能的迅速發展,近年來我國人工智能領域指導性政策文件不斷出臺。如2017年7月國務院印發《新一代人工智能發展規劃》,同年12月工信部公布《促進新一代人工智能產業發展三年行動計劃(2018-2020年)》,明確了我國新一代人工智能發展的戰略目標,部署構筑我國人工智能發展的先發優勢,加快創新型國家和世界科技強國建設。2018年1月中國電子技術標準化研究院《人工智能標準化白皮書(2018版)》,提出確立人工智能產業發展的標準體系;3月政府工作報告明確指出加強新一代人工智能在醫療、養老等多領域的應用。各省市積極響應,出臺本地區的具體實施意見,為人工智能在老年健康領域的應用確立了方向。另一方面,為應對各類風險與危機,我國不斷推出信息建設與信息安全的相關規定。據統計目前我國信息治理層面的相關法規已有100余件,涉及個人信息保護、網絡侵權預防和網絡犯罪懲治等多個領域②。具體到醫療行業,2013年國家衛生計生委、國家中醫藥管理局印發的《關于加快推進人口健康信息化建設的指導意見》,2015年國務院辦公廳印發的《全國醫療衛生服務體系規劃綱要(2015-2020年)》,2017年工信部、民政部、衛計委聯合印發的《智慧健康養老產業發展行動計劃(2017-2020年)》等文件,都著重強調形成覆蓋全生命周期的智慧健康養老產業體系,打造一批智慧健康養老服務品牌。2016年12月,國務院辦公廳印發《關于全面放開養老服務市場提升養老服務質量的若干意見》提出推進“互聯網+”養老服務創新,到2020年養老服務市場全面放開等,都指出實現全員人口信息、電子健康檔案和電子病歷三大數據庫要基本覆蓋全國人口并完成信息動態更新。這些直接或間接性文件的不斷完善,為人工智能在健康領域的應用提供了基本的制度框架。
最后,在技術與政策環境的激勵下,人工智能在老年健康管理中的應用初見成效。從易得的傳感器,到智能化的可穿戴設備,智能護理床、健康服務機器人、陪護機器人等服務機器人,越來越多智能設備參與到老年人健康管理領域。近幾年,房地產商、保險公司、養老機構積極推出高端養老項目,健康服務機器人也隨即而來,其中天津哈士奇機器人作為全球首臺健康服務機器人成為標志性事件。而后,機器人也開始應用在福利中心和養老機構,僅杭州就有70家養老機構和40家照料中心引進了“阿鐵”養老機器人①②,機器人具備健康檢測、健康顧問、緊急報警與陪伴逗樂四項主要功能。同時依托“互聯網+”搭起智能居家養老服務的橋梁,一是通過智能健康腕表隨時測量血壓、心率等生命體征數據。相關研究表明可穿戴智能設備在治療慢性病方面有顯著效果,治療費用、住院時間等都有所降低③④。二是“開心”等智能健康養老機器人通過人體感應、攝像頭遠程監護、聲源定位、語音識別等系統為居家老人提供安全監護、用藥提醒、數據分析等健康服務,約87%的受訪者表示類似于“開心”的智能健康養老機器人會對空巢老人有用⑤。三是通過“互聯網+”和遠程醫療、遠程手術等滿足老年人的醫療需求,通過機械骨骼、輪椅機器人等助力老人康復⑥。從監護到治療,人工智能在各種養老模式的老年人中的初步試水,為應對人口老齡化提供了戰略性思維。
(二)人工智能時代老年健康管理的難題
人工智能為老年人實現全過程健康管理提供了條件,推動了老年健康管理模式的突破與創新,然而目前人工智能在老年健康管理中的應用僅處于起步階段,尚有很多問題需要解決。
其一,從應用范圍來看,價格壁壘難以突破,老年健康管理中人工智能缺乏動力。醫療行業本身就極具復雜性和特殊性,醫療體制改革和醫養結合養老模式發展已推行多年,但仍有很多問題為人們所詬病。人大代表羅衛紅曾提出目前醫養結合雖初具成效,但仍存在醫養結合服務需求與承載力不對稱、行業管理體制不完善、醫養結合醫保支付政策難以保障護理需求等問題。人工智能嵌入老年健康管理為醫養結合模式的發展創造機遇的同時,也提出了更高的要求。人工智能設備造成的健康管理服務費用誰來支付、怎樣支付,目前國內尚未達成共識,這也解釋了為什么目前智能健康機器人多出現在養老機構,而非居家老人家中。不可否認,在當前醫療衛生服務供給不足的情況下,醫養結合型養老機構非常重要,機器人的引入對老年人尤其是對高齡老人、半失能老人與失能老人帶來了極大的便利。然而無論是9064模式還是9073模式,絕大多數老年人是居家養老。針對居家生活老年人的健康監測、預防、治療、康復、護理和心理慰藉等服務需求亟需人工智能的嵌入,然而形勢不容樂觀,一方面是因為智能裝備價格較高,老年人個體往往無意愿或無力購買較為昂貴的智能感應設備,另一方面是因為擔心后續健康服務能否持續跟進,比如一個智能腕表就價值幾千元,如果后期的服務沒跟上,老年人損失就會很大。人工智能的應用必須考慮各方支付意愿,其價格在某種程度上決定了其可推廣的范圍。如何圍繞大健康戰略來定位發展人工智能,實現醫療健康服務利益相關者的協作,為老年人提供全方位全周期的健康服務是亟須解決的關鍵問題之一。
其二,從信息化建設來看,人工智能應用于老年健康管理的信息孤島劣勢明顯。人工智能的應用離不開信息技術的支撐。推進醫療服務大數據建設,建設老年群體數據庫與醫療服務信息平臺,統一相關數據標準是基礎。“人工智能+醫療”最大的問題在于數據的來源和質量,因為我國的醫療數據在醫院與醫院間、醫院與家庭間存在信息孤島,即使在同一個醫院提取和利用數據仍涉及很多操作手續。與此同時,雖然各地政府一直在強調健康養老服務信息平臺建設,但進程并不樂觀,多數老年健康服務僅停留在通過社區門診或體檢獲得數據,共享在街道一級,實現市級統一平臺建設的省份屈指可數。除了技術條件的制約,更多的是缺乏全局的考慮與統籌規劃,民政部門、統計部門、公安部門、衛生部門、醫院等多部門之間的責任模糊,各涉老部門缺乏溝通與配合;各地區各自為政,缺乏共享理念和共享動力,有效的溝通不足,相互之間在操作系統、網絡協議、語義表示、數據庫類型,乃至硬件管理平臺上存在差異,醫療信息數據不能有效實現地區共享,阻礙了人工智能賴以為生的數據信息資源的有效流通,既造成了數據信息資源重復建設,也限制了數據信息資源功能的最大發揮。可見,要想人工智能應用于老年健康管理,積極突破數據壁壘勢在必行。
其三,從健康服務相關主體來看,養老機構、社區服務中心、醫療機構與企業的合作不足。養老服務機構、醫療機構等服務機構本身不生產人工智能設備,而是通過引進人工智能設備服務于老年人,科技企業才是人工智能產品的生產者。服務機構最了解老年健康管理全過程需要什么樣的人工智能產品,而科技企業則在技術上獨占優勢。二者通過跨界合作發揮各自的優勢,才能明確研發內容,最大程度縮短研發周期,以滿足老年人健康管理的需要。然而目前國內各級醫療機構、養老服務機構在該領域的開拓相對滯后,除了發達城市的大型房地產公司通過與科技公司合作建設高端養老基地,應用人工智能參與老年健康管理服務,實現了企業間的人工智能合作外,多數醫療機構、養老服務機構有待進一步跟進。與此同時,醫療機構、養老服務機構提升自身對人工智能產品的駕馭能力也離不開同科技企業的有效合作。兩者有效合作的缺乏在一定程度上制約了老年健康管理過程中的人工智能創新能力的提升。兩者如何建立合作機制,共同推進人工智能的技術創新與應用是人們不得不思考的當務之急。
其四,從研發主體看,老年健康管理領域的人工智能發展受制于稀缺的專業人才。人工智能任何相關技術方面的突破都依賴于人才,可以說其發展能力取決于人才數量。《全球人工智能人才白皮書》顯示全球AI領域的人才缺口達到百萬量級,2017年工信部發言人指出在我國人工智能人才缺口超過500萬,稀缺的專業人才資源是制約全球人工智能技術發展和應用落地的一大短板。人工智能的專業人才既要掌握數據挖掘、語音圖像識別等計算機層面知識,又要了解人工智能應用領域的客觀狀況。AlphaGo之所以能戰勝人類圍棋世界冠軍,在一定程度上是因為其設計者DemisHassabis本人就是天才棋手①。因此,人工智能老年健康領域的專業人才需要集計算機專業技術與健康養老服務行業實踐于一身,才能研發出適合老年群體的智能健康醫療設備。目前國內的人工智能專業性人才缺乏,且多集中于制造業、互聯網等領域的技術開發工作,雖然一些科技公司與醫療機構合作取得初步的成果,但在醫療領域結合上缺乏深度,直接針對健康服務領域的人工智能人才更是不足,阻礙了老年健康領域人工智能技術的推行。
三、未來選擇:人工智能時代老年健康管理的關鍵路徑
人工智能時代的到來,為老年健康管理創造了全新的環境,同時也對政府、社區、醫療機構、養老服務機構等提出了更高的要求。面對人工智能的迅速發展,需積極推進人工智能與老年健康管理的深度融合,以促進適應時代訴求的老年健康管理智能化。
(一)構建人工智能嵌入老年健康管理的管理機制
DouglassC.North指出制度是社會的游戲規則,規定了人與人之間的行為范式②。人工智能時代老年健康管理迫切需要現有機制的突破與創新,當前必須做好三個層面的具體工作。
一是形成專業的領導機制。人工智能科學嵌入老年健康管理離不開政府部門的統一規劃和部署。2018年國家醫療保障局成立,整合了此前散落在人社、民政、衛計委、發改委等多個部門的相關醫療職能,改變了“九龍治水”的管理局面,為人工智能在醫療行業、健康領域的嵌入提供了契機。在老年健康領域推廣人工智能應納入醫療保障局的工作內容,積極推動醫療機構、養老機構、社區養老服務中心等與科技企業的合作,全方位部署人工智能在老年健康管理中的應用格局,從傳感器,到智能化的可穿戴設備,健康服務機器人、智能護理床、陪護機器人等服務機器人,從智能家居設備、養老服務機構智能設備,到智能醫療機器,從老年人健康數據建設到疾病的預防、治療、康復與護理等,培養一支兼具智能理念和實踐經驗的新型領導隊伍,確保政府部門在人工智能應用中始終掌握主動權。
二是培養多元主體信息共享機制。人工智能的發展與應用依賴于數據,因此,人工智能嵌入老年健康管理,一方面需要挖掘分析大量老年健康數據,以便人工智能設備的研發,另一方面需要醫療機構、養老機構、社區居家服務中心、老年人等相互間的數據連通與安全共享,促使多方有效參與老年健康管理。加快健康養老信息平臺建設迫在眉睫,要著力提升多元參與主體的數據素養和技術素養水平,促進多元主體相互間協同配合,協調老年健康數據在各部門間的流通,實現數據信息的交互及供需的有效匹配,從而打破數據壁壘,為提升老年健康管理水平提供數據支撐。
三是建構道德倫理矯正機制。享受人工智能給老年健康管理帶來巨大便利的同時,也必須正視其對道德倫理的挑戰。首先,進一步完善信息保護機制,減少甚至消除老年人對個人信息數據泄露的擔憂。其次,科學認識和使用人工智能。雖然現有的人工智能在某些層面和維度接近、達到甚至超過了人類智能,但其工具性色彩沒有改變,人工智能在老年健康管理中的應用旨在提高健康管理水平,而不是取代醫護人員和親朋好友。兒女的關心、好友的慰問以及老年人必要的社交互動都不可或缺。最后應通過技術發展,為人工智能注入情感,促使人機交互更加和諧。
(二)構建以人工智能為核心載體的老年健康技術系統
推進各級醫療機構和各地養老機構在老年健康管理中發揮更大的作用,需要通過智能化處理系統和便捷高效的急救處理流程,即系統能自動采集老年人身體狀況數據并進行分析,當發生意外跌倒或生命體征數據出現異常,智能呼叫相應的醫療機構,使老人及時、準確地獲取醫療服務。為此,應重點做好兩個層面的工作。
一方面,建設針對老年健康管理的智能處理系統。智能化系統基于計算機網絡技術和信息技術,強化老年健康的數據挖掘系統和數據存儲系統建設,有效整合老年健康管理智能化進程中的各類非數值型、非結構化數據,同時有針對性地引進合適的人工智能技術,如生物識別技術、自然語言處理、機器學習、虛擬等,提升人機交互過程中老年健康數據的處理效率,并以此形成由知識庫、數據庫、推理機、解釋器和知識獲取等組成的老年健康管理系統,為提高老年健康管理水平奠定基礎。
另一方面,創新以人工智能為基礎的醫療流程。智能系統的生命在于應用,老年健康管理途徑與方式的優化必須以智能處理流程的創新為依托。其一,通過人工智能實現老年人健康狀況的自動檢測,根據不間斷、全方位的健康數據跟蹤,智能評估老年人身體與心理的健康狀況,并基于數據分析提出智慧決策,確定老年人在健康方面應采取的措施。其二,智能系統要在識別老年人緊急救助需求的基礎上,主動通知醫療機構,使老年人及時得到救助。至于醫療機構的選擇應符合分級診療原則與就近原則。這對于減少老年人獨居風險,為空巢老人提供“健康保險”有積極的現實意義。
(三)構建“校—企—醫/養”在人工智能領域的深度合作機制
學校是人才培養的重要陣地,科技企業是人工智能產業發展的主力軍,而醫療服務機構與養老機構是老年健康管理的重要參與者。推進人工智能在老年健康管理領域的應用,迫切需要三者的深度協作,以達到通識成材、借勢運力、以智發展的目標。
其一,探索高校與企業協同人才培養模式。相比美國人工智能人才數量,我國明顯滯后。據領英數據顯示,我國從業經驗10年以上的AI人才占AI人才總數比例不足40%,而美國這一比例超過70%;美國人工智能基礎層、技術層和應用層的人才數量占比分別為22.7%、37.4%和39.9%,而中國為3.3%、34.9%和61.8%,人才培養勢在必行。如上文所述,人工智能的專業人才既要掌握數據挖掘、語音圖像識別等計算機層面知識,又要了解人工智能應用領域的客觀狀況。科技企業需要高校的理論與人才的支持,而高校則可借助企業的數據資源和技術平臺推進科研理論進展,將研究價值落地。因此,高校應加強人工智能相關學科建設,吸引國際頂級科學家和高層次人才,加強與科技企業、國外高校及相關機構的合作,將技術教學貫穿到實訓項目中,讓學生在校所學與企業實踐有機結合,培養貫通人工智能基礎理論、軟硬件技術與醫療服務領域應用的縱向跨界人才。人工智能校企合作將有助于人工智能在老年健康領域的加速發展,為人工智能應用打開新局面。
其二,搭建醫療服務機構與企業合作平臺。近年來,阿里巴巴、百度、騰訊和華為等國內企業在人工智能領域的崛起,為老年健康管理的轉型提供了技術支撐。人工智能本身就涉及多重技術,不同行業或領域的關鍵技術必然存在差異,加快人工智能在老年健康管理中的應用,醫療服務機構既要借助科技企業的技術優勢,引入智能技術,又要借助科技企業的智力優勢,培育服務人才。這就要求醫療機構積極通過研發外包的途徑,由科技企業打造契合老年健康管理需求的智能軟件與硬件,加快老年健康管理智能產品的開發與推廣,促進產品從監護提醒類、健康監測類,到醫療設備類、陪護聊天類,關注老年人身體健康的同時注意開發心理健康護理機器人,實現智能產品的多元化與精準化。與此同時,醫療機構通過與科技企業的合作,提高本機構內部人工智能的應用能力。
(四)構建老年健康管理人工智能產品的定價與補貼機制
人工智能在老年健康領域推行受阻的一個很重要的原因是企業囿于無利可圖與老人抱怨收費高現象并存。老年健康領域人工智能產品與服務的價格既不能完全市場化也不能嚴控低價,應建立合理的定價機制與相應的財政保障機制,以平衡市場主體盈利與老年人經濟承受力來促進人工智能在老年健康領域的廣泛應用。
一方面,合理確定老年健康領域人工智能產品的價格。老年人的健康管理產品與服務具有一定的福利性,過高的價格會忽略老年人的經濟承受能力,過低的價格又影響社會資本的收益率與參與積極性,阻礙該領域的進一步發展。根據資本資產定價模型,任何資產的期望收益率都由無風險利率和對所承擔風險的補償—風險溢價兩部分構成,考慮到服務對象的特殊性,老年健康領域人工智能產品合理的投資收益率應等于或略低于市場平均投資收益率,兼顧經濟效益與社會效益。
另一方面,建立相應的財政補貼機制。雖然老年人收入來源更加多元,自報需要照護服務的比例不斷提高,越來越多的老年人有能力購買健康管理設備,但價格仍然是影響其選擇與否的關鍵因素之一。而且受年齡、身體狀況、收入等多重因素影響,有必要分地區、分群體進行大面積的調查統計,找到不同身體狀況與經濟狀況的老年人有能力和意愿支付的平均價格。根據計算出來的市場價格與老年人可支付的價格,分類別分等級進行補貼,對于經濟困難的失能半失能老人要免費配置相應的智能設備。
此外,加強老年健康管理人工智能應用狀況的監管體系和績效評價體系。當前人工智能技術整體還處在較低的發展層次,在認知能力、感知行為、風險對抗等諸多方面仍比較笨拙,應在加強人工智能嵌入的可能性風險管理的基礎上,采取第三方評估方式,科學評價人工智能應用過程的技術適用、服務質量等環節。推進老年健康管理領域的人工智能應用的不斷改進與發展。
四、結語
[關鍵詞]高校;共享財務;財務轉型
隨著科學技術的迅猛發展,人工智能作為前沿科技之一,應用范圍不斷擴大,也給人們的生活帶來了極大的改變。從人機對弈,到自動駕駛汽車、人形機器人,再到弱人工智能階段,人工智能對產業結構、城市形態及生活方式都帶來了巨大的改變。對于財務來說,也實現了從手工記賬到會計電算化,再到財務共享的轉型,讓過去的不可能變為可能。依托互聯網技術,會計電算化走向財務信息化,而財務共享服務中心及相關信息技術的發展,是財務領域又一次里程碑式的革命。
一、高校財務管理現狀及發展趨勢
近年來,隨著高校規模的日益擴大,財務管理模式面臨著巨大的挑戰。國家財政對高校的經濟支持力度越來越大,學校可支配經費數額越來越大,多校區、多模式辦學,異地機構等的建立需要財務部門更合理、科學的安排資金收支,以達到學校資金使用的最優配置。學校各部門間業務往來頻繁,溝通不通暢,財務管理工作變得更加繁瑣,業務量大,效率不高,而國家對高校的資金監管卻逐步提高,這就需要一個共享平臺實現數據的互聯互通、集成管理。隨著人工智能等信息技術的出現和發展,給高校財務管理帶來了新的機會和挑戰。
二、高校財務工作存在的問題
如何解決繁瑣的財務報銷流程,為科研人員松綁,是學校落實科研“放管服”的重要舉措。改革簡潔易操作的財務報銷系統,提高會計信息化水平,提升服務質量,簡化報銷流程,是現在每個高校財務管理人員急需解決的問題。
(一)財務報銷業務量大
隨著高等教育的快速發展,課題項目、研究經費不斷增多,為了避免老師在課題經費使用過程中的虛假支出,國家大力推行電子發票,同時要求使用公務卡進行結算付款,這使得日常報銷中需要核對的信息量急劇增加,給財務人員帶來了工作難度。
(二)政策宣講不到位
隨著國家財經法規及制度的不斷更新完善,財務政策不斷推陳出新。面對數量龐大的師生群體,如何深入的宣講政策制度存在著一定的困難。師生對財務制度了解不透徹,容易造成信息傳遞不到位、不及時,將簡單的報銷業務變得復雜化,降低辦事效率。
(三)報賬員頻繁更換
目前很多課題組缺少科研助理,不同的教職工經常使用同一個經費號,有時還會找學生辦理財務報銷手續,由于不同人員對財務政策的掌握和理解不一致,或者對報賬流程的把握不到位,經常造成單據材料不完備而退單,無形中給財務工作人員造成了返工,增加了時間成本。
(四)財務人員配備不到位
由于報銷內容不斷細化,財務人員工作量不斷提高,無形中也帶來了巨大的工作壓力。目前各高校人員編制均有所限制,學校不得不大量聘用人事,造成人員素質層次不齊。同時,大量簡單的重復性工作,仍需要工作人員人為判斷業務發生的真實性,在不斷提高的服務要求下,極度考驗工作人員的業務素養和溝通能力。
(五)會計信息化水平不高
盡管當前的人工智能技術已經被大規模的應用在現有的財務系統工作中,但智能化手段還不夠高,很多重復、繁瑣的工作仍未解決,不能推動財務工作的轉型。例如預算管理,由于預算管理缺乏相關的信息化系統,信息化水平較低,管理效率低下,現階段還存在通過紙質預算申報書來進行預算信息收集,通過“二上二下”再將最后審定的預算數下發到學院,這樣的預算管理系統是較為落后且不方便的。
三、高校財務工作轉型路徑
(一)建立財務集中核算管理系統平臺
該平臺將整合目前財務資源,實現報賬、審批、審核等業務支撐,具體包括綜合財務管理、共享運營、預算管理等系統。在功能上支持業務填單、審批,財務審核,會計憑證自動生成等功能,通過系統設定規則校驗、預算校驗功能,提高業務處理效率同時加強財務管理。搭建電子報賬系統、電子影像系統、發票采集系統、發票管理系統、共享運營系統、電子檔案系統等于一體的財務共享平臺。
(二)搭建智能化報銷平臺
1.利用OCR技術減輕報賬負擔。通過人工智能技術,將高重復、技術含量低的體力工作通過計算機進行處理,實現會計核算流程自動化,可以大幅提升會計人員的工作效率,如將核對發票抬頭,計算發票金額等人工識別工作改為自動識別校對電子發票,即利用OCR技術,自動提取發票信息,填寫報銷單據,完成發票真偽查驗并提交至影像服務器進行票據保存等工作。2.搭建商旅共享平臺。通過商旅共享平臺,實現一站式差旅服務功能。平臺對接同城商旅,差旅費由供應商墊資,師生通過平臺下單,商旅平臺按月統一對賬開票,同時實現與財務管理系統、網上報銷系統無縫對接。不僅可以實現差旅行為的事前審批管控,同時解決了師生墊資和借款問題,出差標準、預算和資金控制集中管理,后期的自動對賬也解決了報銷時手工粘貼報銷發票的繁瑣手續。既簡化流程,又減輕一線財務人員的工作量,降低成本,提升效率。
(三)建立業財稅一體化的財務共享中心
將重復性大的流水線工作進行集中處理,同時將采購、費用核算、資金管理、往來款管理、合同管理及預算管理等模塊進行整合,搭建全流程的財務共享信息平臺,不僅實現了學校財務工作和職能的整合,也提高了財務管理的效率和質量,在方便師生隨時隨地進行報銷審批的同時推動了財務工作的快速轉型。1.實現線上審批和財務審核。通過整合現有財務資源,實現報賬、審核、審批、支付等全流程管理。財務集中核算管理系統平臺在功能上支持業務審批、報銷單據填報、會計憑證自動生成等,并通過設定校驗規則和預算控制規則提高業務處理效率,增強風險控制力度。系統承載了員工自報賬初始至業務領導審批、財務審核、付款會計支付的全程業務及財務信息,支持所有納入的上線單位費用報銷業務的流程化、標準化、高效率處理。2.實現報賬共享。所謂的報賬共享是建立在核算共享的基礎上的,即前端的網上報賬流程全部通過共享的模式,借助電子影像化,實現全單位模式下,財務人員處理多部門各單位的報銷、核算、稽核、發票查詢等模式,同時將預算、核算進行全面共享,各權限人員均可瀏覽。3.實現采購管理智能化。在采購共享方面,借助成熟的電商平臺,實現辦公用品、專用材料等在線采集訂購,確保交易的真實性和完整性,同時減少人員自行墊支資金,和項目掛鉤,統一結算,實現消費業務和財務業務自動化結算,使財務數據和業務數據融為一體,方便數據提取和統計。4.實現發票管理稅務共享。基本的會計核算發票有交通費、餐費、住宿費、辦公費等類型,現階段普遍采用機打發票和電子發票。票據報銷業務占據著高校財務業務的很大比重,投入的人力也是最多的。在稅務共享模式下,發票管理模塊可以通過共享平臺進行自動驗真及,在提升業務合規性的同時可以大大降低重復報銷的問題。5.將合同管理與往來款管理掛鉤。通過引入合同管理系統,可以利用完善的管理流程和標準來規范合同的管理。將合同管理系統與其他業務系統間數據實現互聯互通,對合同履行階段、狀態進行統計監控,同時與往來款管理掛鉤,實時統計支付情況,隨時做到異常預警。通過啟用合同結算功能,實現合同關鍵信息管理,并支持上傳電子附件,連通電子影像系統進行影像掃描與影像查詢,實現合同的無紙化調閱。合同臺賬模塊可通過登記合同關鍵結構化數據,在電子報賬系統報賬時關聯合同,進行收付款計劃控制,從而實現合同控制。
(四)建立全面預算管理系統
通過建立預算管理系統,學校各單位可在線進行預算信息填報并進行線上審核,無需遞交紙質材料,大大提高學校的預算管理水平。在深入分析高校預算管理實際情況和普通要求的基礎上,結合學校預算管理模式和思路,建立包括:預算申報、預算編制、撥款下達、預算執行、執行分析、預算考核在內的完整有效的全過程預算管理系統。預算管理系統和財務系統共用一個數據庫,主要用做后臺接收、處理數據,可實現學校二級單位預算申報、審批、調整、撥款、執行等一系列線上管理模式。
(五)建立電子檔案系統
財務共享模式下的檔案管理,通過電子影像化管理系統來實現,電子檔案系統通過與網上報賬系統、核算系統、電子影像系統等其他業務系統的無縫集成,實現憑證電子化的無縫管理。電子檔案系統將公司會計檔案納入系統管理,實現會計憑證和電子影像的自動匹配、分冊,檔案的歸檔、借閱等,在系統內有跡可查,方便原始憑證的調閱和查詢。
(六)建立稽核管理系統
為方便稽核業務的開展,減少線下手工翻閱憑證,建立稽核管理系統。涵蓋憑證、預約單、資產等數據資源,以數據為基礎,工商、稅務發票為接口,隨時調取賬務系統和網報系統。將違反規則的業務視為風險業務,并支持告警推送,事前、事中、事后全方位稽核。現階段事后稽核使用較多,通過檢查連號發票、賬務處理不規范、疑似拆分合同等情況,形成稽核報告,并反饋財務審核人員及相關經費負責人,在督促經費使用的同時,提升會計核算質量。大數據是推動社會走向智能化的重要驅動力,大數據、電子發票、會計電子檔案等的快速發展以及人工智能在財務上的應用,為共享財務奠定了一定基礎,目前高校需要不斷加快速度,進行研究探索、發展完善,建設財務共享中心不僅能夠實現財務集中,更重要的是推動高校財務順利轉型。
[參考文獻]
[1]張樂.人工智能背景下高校財務管理轉型問題研究[J].經濟研究導刊,2020(19):104-105.
[2]李曼.淺談人工智能背景下的高校財務轉型[J].現代營銷:信息版,2020(5):32-33.
[3]關欣.關于人工智能對高校科研財務工作積極影響的探討[J].經貿實踐,2020:198-199.
[4]汪晶.人工智能在高校財務服務中的應用研究———以電子科技大學為例[J].教育財會研究,2017,28(6):76-80.
[5]金昕瑋.高校財務共享管理模式的應用分析[J].納稅,2017(15):49-49.